skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "den_Brok, Jakob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Over the past decade, several millimeter interferometer programs have mapped the nearby star-forming galaxy M51 at a spatial resolution of ≤170 pc. This study combines observations from three major programs: the PdBI Arcsecond Whirlpool Survey, the SMA M51 large program, and the Surveying the Whirlpool at Arcseconds with NOEMA. The data set includes the (1–0) and (2–1) rotational transitions of12CO,13CO, and C18O isotopologues. The observations cover ther< 3 kpc region, including the center and part of the disk, thereby ensuring strong detections of the weaker13CO and C18O lines. All observations are convolved in this analysis to an angular resolution of 4″, corresponding to a physical scale of 170 pc. We investigate empirical line ratio relations and quantitatively evaluate molecular gas conditions such as temperature, density, and the CO-to-H2conversion factor (αCO). We employ two approaches to study the molecular gas conditions: (i) assuming local thermodynamic equilibrium (LTE) to analytically determine the CO column density andαCO, and (ii) using non-LTE modeling withRADEXto fit physical conditions to observed CO isotopologue intensities. We find that theαCOvalues in the center and along the inner spiral arm are ∼0.5 dex (LTE) and 0.1 dex (non-LTE) below the Milky Way inner disk value. The average non-LTEαCOis 2.4 ± 0.5Mpc−2(K km s−1)−1. While both methods show dispersion due to underlying assumptions, the scatter is larger for LTE-derived values. This study underscores the necessity for robust CO line modeling to accurately constrain the molecular interstellar medium’s physical and chemical conditions in nearby galaxies. 
    more » « less
  2. We present the first results from “Surveying the Whirlpool at Arcseconds with NOEMA” (SWAN), an IRAM Northern Extended Millimetre Array (NOEMA)+30 m large program that maps emission from several molecular lines at 90 and 110 GHz in the iconic nearby grand-design spiral galaxy M 51 at a cloud-scale resolution (∼3″ = 125 pc). As part of this work, we have obtained the first sensitive cloud-scale map of N2H+(1–0) of the inner ∼5  × 7 kpc of a normal star-forming galaxy, which we compared to HCN(1–0) and12CO(1–0) emission to test their ability in tracing dense, star-forming gas. The average N2H+-to-HCN line ratio of our total FoV is 0.20 ± 0.09, with strong regional variations of a factor of ≳2 throughout the disk, including the south-western spiral arm and the center. The central ∼1 kpc exhibits elevated HCN emission compared to N2H+, probably caused by AGN-driven excitation effects. We find that HCN and N2H+are strongly super-linearily correlated in intensity (ρSp ∼ 0.8), with an average scatter of ∼0.14 dex over a span of ≳1.5 dex in intensity. When excluding the central region, the data are best described by a power law of an exponent of 1.2, indicating that there is more N2H+per unit HCN in brighter regions. Our observations demonstrate that the HCN-to-CO line ratio is a sensitive tracer of gas density in agreement with findings of recent galactic studies utilising N2H+. The peculiar line ratios present near the AGN and the scatter of the power-law fit in the disk suggest that in addition to a first-order correlation with gas density, second-order physics (such as optical depth, gas temperature) or chemistry (abundance variations) are encoded in the N2H+/12CO, HCN/12CO, and N2H+/HCN ratios. 
    more » « less